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Abstract

We present a one-dimensional model of reaction, diffusion and mixing in a two-dimensional ¯ow. The model assumes that initially

segregated reactants are stretched and folded into a lamellar structure. Reaction and diffusion are simulated within this one-dimensional

lamellar array. The lamellae are assumed to have a uniform thickness. Mixing is included as a single parameter i.e. the average stretch rate

of the ¯ow. Results are compared with full two-dimensional simulations of the concentration ®elds. Given the very simple nature of the one-

dimensional model and the complexity of the full system, remarkably good agreement is obtained with a considerable saving in

computational effort. For a competitive±consecutive reaction the predicted yields agree to within 6%. A typical one-dimensional simulation

on a Silicon Graphics R5000 workstation takes around 1 min compared to 25 h on a 1024-node nCUBE 2 parallel computer for the

concentration ®eld simulations. The one-dimensional lamellar simulations are not limited by the relative rates of diffusion, reaction and

advection, and are generally applicable to complex two-dimensional and, in principle, three-dimensional ¯ows. # 1998 Elsevier Science

S.A. All rights reserved.
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1. Introduction

Numerical simulation of chemical reactions in ¯uid ¯ows

is a problem that has been of interest to many researchers [1±

4]. Two major goals of much of the research into such

systems are: (i) predicting the rate of reaction, and (ii)

determining the quality of the product ± the ratio between

desired products and waste, formed in secondary, simulta-

neous (and unwanted) reactions. Clearly these issues are

important for industrial chemical reaction processes. In this

paper, we address both issues for a two-stage reaction in a

two-dimensional chaotic laminar ¯ow. (Higher dimensional

¯ows and turbulent modelling are beyond the scope of this

work.)

In principle, if the velocity ®eld is known, it is possible to

simulate the development of the full concentration ®eld for a

given system. For systems where the rate of diffusion is

relatively low, however, this approach becomes impractical.

The ¯uid mixing can generate a very complex structure with

small scale variations of the concentration ®eld before

signi®cant diffusion can occur. In these circumstances a

prohibitively large numerical grid is required to describe the

concentration ®eld.

Simulations of this kind have recently been carried out by

Muzzio and Liu [3], hereafter referred to as ML, who

examined the progress of the two-stage reaction A�B!R,

B�R!S in a chaotic ¯uid ¯ow. In particular they were

concerned with the relative yields of R and S, and the extent

to which reactants were trapped inside islands within the

chaotic ¯uid ¯ow. However, the parameter regimes in which

simulations can be carried out are restricted, and these

simulations are computationally expensive.

The ¯uid ¯ow generates a complicated pattern of stria-

tions of reactants. As time evolves, more and more, thinner

and thinner striations are generated by the stretching and

folding action of the ¯ow. Diffusion of reactants is most

rapid in the high concentration gradients of the thinnest

striations, and these striations are rapidly smeared out,

facilitating chemical reaction. Although the detailed picture

is very involved, the formation of striations suggests that a

relatively simple model may usefully be applied. In this

model the complicated pattern of striations is replaced by

one-dimensional array of lamellae, in which reaction and
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diffusion take place. Rather than repeating the two-dimen-

sional simulations of ML, here our objective is to apply one-

dimensional lamellar model to their system and to investi-

gate quantitatively the utility of the model. The problem

then becomes one of reactions and diffusion in a one-

dimensional array, and yields a considerable saving of

computational time. In addition, the lamellar model is

not restricted to the parameter regimes of the full two-

dimensional simulations.

Much work has been directed towards the analysis and

numerical simulation of the single-step reaction A�B!R in

a one-dimensional lamellar structure. Numerical simula-

tions were ®rst carried out by Muzzio and Ottino [5,6] and

subsequently in a series of papers by Sokolov and Blumen

[7±10] in the limit of in®nitely fast reaction. In this event,

there are well-de®ned lamellae because the reactants cannot

coexist. When the reaction rate is ®nite and reactants are

free to diffuse, the lamellar structure becomes progressively

smeared out.

In all of these works the lamellar array is of ®xed width,

whereas we know that the action of the ¯uid stirring is to

stretch regions of ¯uid and produce ever thinner striations.

Such stretching may be accommodated within the lamellar

model by placing the lamellae in a velocity ®eld that causes

the lamellar structure to become progressively thinner. The

corresponding reaction±diffusion±advection equations may

be reduced to a reaction±diffusion system [11,1] by apply-

ing a coordinate transformation. The choice of velocity ®eld

might reasonably be such that the width of the lamellar array

decreases exponentially with time. Then the time taken for a

lamellar width to halve is inversely proportional to the

Lyapunov exponent (which is an average stretch rate) of

the underlying two-dimensional velocity ®eld.

In this paper, we carry out simulations of reaction,

diffusion and advection using a one-dimensional lamellar

model for a two-dimensional chaotic ¯ow. The ¯ow and

parameter values are chosen to enable comparisons with the

two-dimensional simulations of ML.

Comparison is made between the results from our one-

dimensional simulations, and the `full' two-dimensional

simulations of ML.

2. The two-dimensional reaction±diffusion±advection
problem

We consider the competitive-consecutive (or two-step)

reaction

A� B!k1
R; B� R!k2

S (1)

where the rate constant for the production of R greatly

exceeds that for S, i.e.

k2

k1

� �� 1 (2)

The reactants A and B are initially segregated and the

products R (desired product) and S (unwanted by-product)

are initially absent. The reactions take place in a ¯uid

undergoing prescribed two-dimensional ¯ow, u�(u, v).

We let cA, cB, cR cS denote the concentrations of the

corresponding chemical species and suppose that the two-

dimensional system may be described by the following

coupled reaction±diffusion±advection system:

@cA

@t
� u � rcA � Dr2cA ÿ k1cAcB (3)

@cB

@t
� u � rcB � Dr2cB ÿ k1cAcB ÿ k2cBcR (4)

@cR

@t
� u � rcR � Dr2cR � k1cAcB ÿ k2cBcR (5)

@cS

@t
� u � rcS � Dr2cS � k2cBcR; (6)

where t is time, D is the diffusivity (assumed to be the same

for all chemical species) and r is the two-dimensional

differential operator (@/@x, @/@y).

Following ML, we rescale the system of equations and

make the problem dimensionless by setting

T � tU0

L0

; X � x

L0

; U � u

U0

: (7)

Here U0 is a typical velocity component of the ¯uid ¯ow and

L0 is a typical length scale for the ¯uid domain. We non-

dimensionalise the chemical concentrations, dividing each

by cB0, the initial concentration of species B. The dimen-

sionless system is then the reaction±diffusion±advection

system

@A

@t
� U � rA � 1

Pe
r2Aÿ D

Pe
AB (8)

@B

@T
� U � rB � 1

Pe
r2Bÿ D

Pe
ABÿ �D

Pe
BR (9)

@R

@T
� U � rR � 1

Pe
r2R� D

Pe
ABÿ �D

Pe
BR (10)

@S

@T
� U � rS � 1

Pe
r2S� �D

Pe
BR (11)

where r is now (@/@X, @/@Y). This non-dimensionalisation

introduces two new dimensionless parameters, the second

DamkoÈhler number,

D � k1cB0L2
0

D
(12)

and the PeÂclet number,

Pe � U0L0

D
(13)

Pe is the ratio of the characteristic time for diffusion to that

for advection, and is typically very large in many physical

applications. In numerical simulations, a large PeÂclet num-

ber can generate computational dif®culties as a ®ne numer-

ical grid is required to resolve the large gradients in the

concentration ®eld that may arise. Since our simulations are
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restricted to a single dimension, we require substantially

fewer nodes than we would for equivalent simulations in

two or three dimensions. Hence we can carry out simula-

tions at larger PeÂclet number than would be possible in

higher dimensions. To allow comparison with the results of

ML we set Pe�104. The ratio 
 � D=Pe is the ratio of the

characteristic time for advection to that for reaction. We

examine three cases: D�103 (
�0.1 slow reactions),

D�104 (
�1 intermediate), and D�105 (
�10 fast reac-

tions). However, real-life applications typically have PeÂclet

numbers in the range from Pe�102 (laminar ¯ames) to

Pe�1010 or higher (turbulent reactive ¯ows, polymeriza-

tions) [3].

2.1. The sine flow

Until recently, the complexity of the reaction±diffusion±

advection problem has restricted numerical studies to one

dimension. However, with the advent of parallel computers,

ML were able to simulate mixing, diffusion and reaction for

a simple two-dimensional model: the two-dimensional sine

¯ow. While this ¯ow may seem unrealistic, it can exhibit an

extensive repertoire of mixing behaviours, and, as we shall

see, data obtained from this system is useful for comparison

with results from our one-dimensional simulations. This

time-periodic ¯ow is de®ned in the square domain 0�x�1,

0�y�1 by two motions:

u � sin 2�y; v � 0; for �nÿ 1� TP � t < �nÿ 1=2�TP

(14)

u � 0; v � sin 2�x; for �nÿ 1=2�TP � t < nTP

(15)

where u and v are the x and y components of the velocity

®eld, TP is the period, and the integer n is the number of

periods. The ¯ow domain has periodic boundaries.

By varying the period, TP a large range of mixing

behaviours is possible. Following ML, we consider three

cases: TP�0.4, 0.8, 1.6. PoincareÂ sections obtained by

plotting the position of several points after many periods

are shown in Fig. 1. The ®rst case, TP�0.4, shows poor

mixing. Two large islands form barriers to ¯uid transport,

and any ¯uid contained inside an island can escape only by

diffusion. However, the ¯ow in the `X' shaped region is

chaotic, and mixing here is (locally) good. The second case,

TP�0.8, is shown in Fig. 1(b). Four small islands are

present, covering around 20% of the ¯ow domain. Smaller

islets are also present. The ®nal case, TP�1.6, shown in

Fig. 1(c) is essentially globally chaotic. Small islands do

exist, but they occupy only a small proportion of the ¯ow

domain.

In order to quantify the mixing achieved in each case, we

consider the mapping from a ¯uid particle's position (x0, y0)

at time t�0 to its position (x1, y1) one period later. The

Jacobian of this mapping is

J�x0; y0� �
@x1

@x0

@x1

@y0

@y1

@x0

@y1

@y0

0BB@
1CCA

� 1 Tp� cos�2�y0�
Tp� cos�2�x1=2� 1� T2

p�
2 cos�2�x1=2� cos�2�y0�

 !
(16)

where

x1=2 � x0 � TP

2
sin�2�y0� (17)

The Jacobian of the nth iterate of the mapping is then simply

Jn�x0; y0� � J�xn; yn�J�xnÿ1; ynÿ1� � � � J�x0; y0� (18)

where (xk,yk) is the position of the ¯uid particle at time

t�kTP. The eigenvalues �1, �2 of this matrix provide an

indication of the stretch experienced by the ¯uid particle

initially at (x0,y0). We introduce the ®nite-time Lyapunov

exponent

�n�x0; y0� � 1

nTP

log max�j�1j; j�2j� (19)

Fig. 2 shows �n�x0; y0� for the three cases TP�0.4, 0.8, 1.6

for n up to 500; in each case four different choices of

initial position (x0, y0) are illustrated. The convergence of

sn(x0, y0) as n becomes large is slow. We de®ne

�1 � limn!1�n and estimate �1�0.6, 0.8, 1.2 for

TP�0.4, 0.8, 1.6, respectively.

Fig. 1. PoincareÂ sections of the sine flow. The three cases are TP�0.4, TP�0.8 and TP�1.6.
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The values of �n(x0, y0) vary considerably with the choice

of (x0, y0). This has implications for the one-dimensional

model; since, as we shall see later, most of the reaction has

taken place after 8 dimensionless time units, well before the

asymptotic regime as n!1 in which �n(x0, y0) is indepen-

dent of (x0, y0). This corresponds to n�20 for TP�0.4, n�10

for TP�0.8, and n�5 for TP�1.6. Hence, individual ¯uid

elements will experience a whole range of stretching rather

than the uniform stretch we use in our one-dimensional

lamellar model.

3. The lamellar model

As we have already mentioned, the (laminar) chaotic

mixing of ¯uids creates evolving structures consisting of

stretched and folded striations. The stretching is due to the

divergence of neighbouring chaotic trajectories and leads to

a thinning of the striations with time, whilst the folding is a

global property which is necessary if the ¯uid is to remain in

a ®nite domain. The stretching of the striations creates

dif®culties for the two-dimensional simulations since the

numerical grid must be ®ne enough to describe the rapid

changes in concentration across thin striations. However, the

presence of these thin structures also suggests that the

reaction and diffusion in the two-dimensional system

may be modelled effectively by a one-dimensional array

corresponding to taking a `slice' across the striations. This

assumption has been the foundation for many analytical and

numerical studies [12,13,5,6].

Fig. 3 shows how a slice across a two-dimensional struc-

ture of striations can be utilised to provide input data for a

one-dimensional lamellar model. The striations in Fig. 3(a)

consist of alternating layers of chemical species A and B

produced by mixing a blob of ¯uid B in a tank of ¯uid A, in

the absence of reaction and diffusion. By taking a line

roughly perpendicular to the striations and recording the

concentrations of chemical species along the line, we gen-

erate segregated initial conditions for a one-dimensional

simulation of reaction and diffusion (Fig. 3(b)). If diffusion

and reaction are then allowed to take place in the one-

dimensional lamellar structure, the reactant concentrations

Fig. 2. Plot of �nTP against number of maps n for TP�1.6 (solid lines), TP�0.8 (dashed lines), TP�0.4 (dotted lines).

Fig. 3. (a) A close-up of a portion of the interface between chemical

species A and B some time after a blob of B is placed in the sine flow. The

velocity field stretches and folds the blob into a complicated structure

consisting of many thin striations. (b) Concentration of B is plotted along a

line cutting the striations. This concentration profile is taken as an initial

state for a one-dimensional lammellar model. (c) The lammellae are

allowed to diffuse and react in a one-dimensional array-concentration of

species B is shown some time latter.
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evolve in some fashion (see Fig. 3(c)) that blurs the bound-

aries of the lamellae.

Until recently, much of the one-dimensional analysis has

concentrated on a somewhat arti®cial lamellar model where

striations are produced initially by mixing without reaction

or diffusion, and then reaction and diffusion are allowed to

occur in the absence of further ¯uid mixing. However, ¯uid

mixing can be incorporated into the one-dimensional model

by placing the lamellae in a one-dimensional velocity ®eld,

U�ÿ�1X, that causes the lamellar structure to become

exponentially thinner with time [1,2,11]. The non-dimen-

sional domain has width

L�T� � exp�ÿ�1T� (20)

This exponential squashing of lamellae mimics the ¯uid

mixing in the two-dimensional system. To describe the

diffusion and reaction in the evolving lamellae, we rescale

Eqs. (8)±(11) with the following scales for time and lengths:

Pe, L(T). As a consequence, the term U�rA is eliminated,

and the dimensionless system is then the one-dimensional

reaction±diffusion system

@A

@T
� exp 2�T

@2A

@X2
ÿDAB (21)

@B

@T
� exp 2�T

@2B

@X2
ÿDABÿ �DBR (22)

@R

@T
� exp 2�T

@2R

@X2
�DABÿ �DBR (23)

@S

@T
� exp 2�T

@2S

@X2
� �DBR (24)

We have retained the symbols for non-dimensional time, T,

and space, X, coordinates, but no confusion should arise as

from here on these terms refer to the one-dimensional

reaction-diffusion system (Eqs. (21)±(24)). The stretching

exponent ���1Pe. We note that our rescaling of the width

of the lamellar system by L(T) has the effect of introducing a

diffusion coef®cient that increases exponentially with time

while the reaction coef®cient remains constant. In addition,

the non-dimensional domain is now of ®xed (unit) width.

The exponential growth of the diffusion term comes as a

consequence of keeping the non-dimensional domain at

constant width. Rather than letting lamellae reduce in size,

which would increase concentration gradients and thereby

increase the rate of diffusion, we keep the width of the

domain ®xed so that the diffusion coef®cient increases

correspondingly with time.

The utility of this one-dimensional model is discussed in

Section 4, where comparison is made with results from the

two-dimensional reaction±diffusion±advection system.

3.1. Well-mixed reaction system

If the chemical species diffuse rapidly (with respect to the

rate of chemical reaction), we consider the system to be

homogeneous. This greatly simpli®es the analysis; later

when we discuss our numerical simulations we compare

our results with a homogeneous system as a limiting case.

Reaction in a well-mixed system has been described by

[14,15]. One result used later is that the concentration of A

can be determined as an implicit function of time from

T�
Z A0

A�T�

d�

��1ÿ2A0 � ��1ÿ 2��=�1ÿ ����� ��A1ÿ�
0 �=�1ÿ ������

(25)

where A(0)�A0, B(0)�1, R(0)�0, S(0)�0.

4. Numerical simulations of the one-dimensional
reaction±diffusion system

We have carried out numerical simulations of the one-

dimensional reaction±diffusion system Eqs. (21)±(24) in

the interval

0 � X � 1 (26)

which initially contains a pair of lamellae of equal width,

one of species A and one of species B.

Periodic boundary conditions are applied to the system,

so that A(X�1, T)�A(X, T) for all T �0, and similarly for B,

R, and S; thus a periodic array of lamellae is simulated.

The one-dimensional reaction±diffusion system is solved

numerically using the method of lines [16]. A central

difference operator is used to discretise the Laplacian

operator, which reduces the problem to a system of coupled

ordinary differential equations for the concentrations at the

various spatial nodes. A NAG Library routine that imple-

ments a Runge±Kutta±Merson scheme is used to integrate

the system forwards in time. The number of spatial nodes is

taken to be 100, which provides more than adequate resolu-

tion.

4.1. Scope for mixing to affect the rate of reaction

Before we consider speci®c cases of mixing, diffusion,

and reaction in a one-dimensional array, we investigate the

extent to which ¯uid mixing could in¯uence the reaction

kinematics. If mixing is rapid (compared to reaction), then

the rate of reaction will approach that of the well-mixed

case, for which we have an analytical solution. On the other

hand, if mixing is slow, then the lamellae will be squashed

very slowly on average, and the rate of reaction will

approach that of an initially segregated system with no

squash (��0). Numerical results were obtained for


�0.1, 1.0 and 10 with no squashing starting with a

periodic array of lamellae (as above). Initially we set

��0, and ignore the secondary unwanted B�R!S reaction.

The initial concentrations are A(X, 0)�1, B(X, 0)�0 for 0�
X<0.5, A(X, 0)�0, B(X, 0)�1 for 0.5�X<1. The results are

displayed in Fig. 4, where we plot the mean concentration of

species A against time together with the results from the

corresponding well-mixed reaction obtained from Eq. (25).
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We expect the results for one-dimensional simulations in

exponentially shrinking physical domains to lie between the

corresponding curves for the well-mixed and ��0 systems.

As can be seen clearly in the ®gure, the rate of reaction at

early time depends crucially on the amount of mixing. This

is in agreement with asymptotic predictions of the initial

decay of reactants in two limiting cases: for systems with

��0, A(0)ÿA(t) / t3/2 at early times, whilst A(0)ÿA(t) / t

for the well-mixed case [17]. The gap between the well-

mixed and initially segregated curves widens as the Dam-

koÈhler number increases.

4.2. One-dimensional reaction±diffusion simulations

One-dimensional simulations of Eqs. (21)±(24) were

carried out in a periodic array of lamellae. Each ¯ow is

characterised using a stretch rate equal to the Lyapunov

exponent. Three values of the Lyapunov exponent (�1�0.6,

0.8, 1.2) corresponding to the simulations of the sine ¯ow in

Section 3 were used, each at 
�0.1, 1 and 10. The results

are displayed in Fig. 5, which should be compared with

Fig. 8(a) of ML. We also include corresponding results for

the two-dimensional simulations at 
�1, carried out by

ML. Our one-dimensional results are remarkably similar to

the two-dimensional simulation results obtained by ML, the

largest discrepancies being for slow mixing (TP�0.4) at


�1, 10 which could be accounted for by the presence of

islands in the two-dimensional ¯ow. We note that the main

differences between the one-dimensional and two-dimen-

sional numerical simulations occur at early time ± the early

concentration of the reactant A falls much more rapidly in

the two-dimensional case than in our one-dimensional

simulations. To explain this phenomenon, we consider

the interface between the reactants A and B in the two-

dimensional ¯ow in the absence of reaction and diffusion. In

Fig. 6, we plot the growth rate of the interface,

� � 1

t
log

LI�t�
LI�0�
� �

against time. In our one-dimensional model, we assume that

the length of the interface, LI(t), grows exponentially

according to the Lyapunov exponent: LI(t)�LI(0)

exp(�1t). The predicted growth rates, ��0.8, 1.3, and

1.5 should therefore be compared with the Lyapunov expo-

nents, �1�0.6, 0.8, and 1.2 for TP�0.4, 0.8, and 1.6,

respectively (determined in Section 2). We note that the

interface grows faster than the Lyapunov exponent predicts

in all cases. Hence, our one-dimensional simulations under-

estimate the ¯uid mixing that occurs in the two-dimensional

¯ow at early times. This phenomenon has also been

observed by Sawyers et al. [18].

4.3. Two-stage reaction

Whilst mixing affects the rate of reaction for the single-

stage reaction, the eventual composition of the products

relies solely on the initial concentrations of the chemical

species A and B. However, for �>0 in the competitive±

Fig. 4. Plot of the mean concentration of A against time. Upper three

curves are for no mixing (��0), and lower three curves are for well-mixed

cases 
�0.1 (solid line), 
�1 (dashed line), and 
�10 (dotted line). In

each case the equations Eqs. (21)±(24) are solved numerically, subject to

initially segregated or well-mixed initial distributions of species A and B.

Fig. 5. Mean concentration of species A versus time. Upper figure:

TP�0.4 (solid lines), TP�0.8 (dashed lines), and TP�1.6 (dotted lines).


�0.1 (top three curves) 
�1 (middle three curves), and 
�10 (bottom

three curves). The results from ML's two-dimensional simulations are

compared with our one-dimensional results for TP�0.8 in the lower figure.

Fig. 6. Growth rate of the interface for TP�0.4 (solid line), TP�0.8

(dashed line), and TP�1.6 (dotted line) against time. The asymptotic

values ��0.8, 1.3 and 1.5 should be compared to the Lyapunov exponents

(0.6, 0.8, 1.2).
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consecutive reactions (Eq. (1)), mixing affects both the rate

of formation and the composition of the products R and S.

Following ML, we set �D � 104, and plot the mean con-

centrations of species R and S in Figs. 7 and 8. This ®gure

should be compared with Fig. 11(b) of ML. In their two-

dimensional simulations, ML set D � 1 to simplify the

computational steps. This is unnecessary in our case, and

instead we keep ��0.1, and D � 105. To quantify the utility

of the one-dimensional model, we compare in Table 1 the

®nal concentrations of the products R and S predicted by the

one-dimensional simulations to the values obtained by ML's

two-dimensional simulations. At a glance, the accuracy of

the one-dimensional model is good, with concentrations of

the desired product R within 6% of the two-dimensional

results. However, we note that the one-dimensional model

predicts that for low and moderate mixing, more R will be

formed than for the two-dimensional case. We can explain

this over-estimate by the presence of large periodic islands

in the low mixing case, and smaller islands in the moderate

case (see Fig. 1). These islands reduce the amount of ¯uid

mixing in the two-dimensional simulations, but are not

taken into account by our simple one-dimensional simula-

tions. It might be possible to develop a more sophisticated

model by applying Eqs. (21)±(24) only to that part of the

two-dimensional ¯ow domain that experiences chaotic mix-

ing, and by considering mixing in the islands separately.

Although such an approach might provide a more realistic

estimate of the ®nal concentrations of the products, it is

beyond the scope of this paper. Perhaps the most valuable

estimate of the utility of the one-dimensional model is

obtained by considering the results at high mixing. Here

there are no periodic islands(at least, none of signi®cant

area) to affect the results. The discrepancies in this case

(5.4% for R and 29.3% for S) are consistent with the growth

of the interface exceeding that predicted by the Lyapunov

exponent (see Fig. 6).

5. Discussion

We have demonstrated that the one-dimensional lamellar

model is a useful tool in evaluating the products of diffusion,

reaction and mixing in a two-dimensional system. The close

agreement between reaction rates and also product quality

for an albeit simple competitive±consecutive reaction

scheme shows that the lamellar modelling approach fol-

lowed by many researchers is justi®ed. However, we need to

extend these preliminary results to look at more complex

reaction schemes and also to consider more realistic ¯uid

¯ows as data becomes available.

Clearly the one-dimensional approach ignores important

features in higher-order systems such as periodic islands,

which need more careful consideration. However, if we are

concerned with simulating reactions in chemical engineer-

ing applications we expect hindrances to mixing (such as

periodic islands) to be removed by simple imposed pertur-

bations, or other techniques. Reactor design should con-

centrate on generating a uniformly chaotic ¯ow ®eld to

ensure uniform mixing, and this is coincidentally where the

one-dimensional model is of most use. Hence we expect the

Fig. 7. Plots of 2�R�T� and 3�S�T�, where �R and �S are the mean

concentrations of species R (top 3 curves) and S (lower 3 curves). TP�0.4

(solid lines), TP�0.8 (dashed lines), and TP�1.6 (dotted lines).

Fig. 8. Figures 8a, 11b from ML.

Table 1

Comparision between the final concentrations of the products R and S

from the one-dimensional (R1D, S1D) and two-dimensional (R2D, S2D)

numerical simulations

Mixing intensity �1 R1D/R2D S1D/S2D

Low 0.6 102.8% 108.9%

Moderate 0.8 100.6% 113.0%

High 1.2 94.6% 129.3%
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one-dimensional approach to be of particular interest to

`real-life' engineering applications. However, it remains to

be seen if the model can reproduce more demanding experi-

ments at higher PeÂclet number, with three-dimensional ¯ow

or with more complicated chemical kinetics. The simplicity

of the model ± we require only one parameter, namely, the

Lyapunov exponent ± makes it of use where the ¯ow ®eld is

inaccessible, but the Lyapunov exponent can be measured

by time-series analysis, for example. Using an exponent

which measures the increase in intermaterial area would

provide a better estimate for the mean squash.

The major weakness of the one-dimensional approach is

that at early times where there are no lamellae as such, just a

blob of ¯uid, the reaction and diffusion cannot be predicted

accurately. The detailed behaviour of the system must then

be obtained by consideration of the full two-dimensional

model. (At early times it may be possible to follow the

motion of the interface without the need for a prohibitively

®ne numerical grid.) A further limitation of the model

comes from its use of a mean striation thickness. Realistic

¯ows generate striations with widths spanning many orders

of magnitude. Since the amount of waste produced at each

location depends strongly on the local striation thickness, an

estimate of the waste based solely on the mean thickness

will almost always be an underestimate.

As a guide to the computational savings produced by

using a one-dimensional model, each numerical simulation

reported in this paper took less than 1 min to run on a Silicon

Graphics R5000 Workstation whereas the two-dimensional

calculations performed by ML each consumed about 25 h in

a 1024-node nCUBE 2 parallel computer.

In conclusion, the simple one-dimensional model we

have developed is a useful tool in estimating the yield from

chemical reactions occurring in chaotic ¯uid ¯ows. How-

ever, it has several important limitations, and hence should

not be regarded as a replacement for higher dimensional

models. Extensions to this work are currently in progress,

and include attempting to predict the local concentration

®eld from the one-dimensional model.
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